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Abstract—When the underlying physical phenomenology 
(medium, sediment, bottom, etc.) is space-time varying along 
with corresponding nonstationary statistics characterizing noise 
and uncertainties, then sequential methods must be applied to 
capture the underlying processes. Sequential detection and 
estimation techniques offer distinct advantages over batch 
methods. A reasonable signal processing approach to solve this 
class of problem is to employ adaptive or parametrically 
adaptive signal models and noise to capture these phenomena. 
In this paper, we develop a sequential approach to solve the 
signal detection problem in a nonstationary environment. 
 

 
I. INTRODUCTION 

 
The advent of quiet nuclear submarines and the current 
proliferation of even quieter diesel powered vessels have 
necessitated the need for more sophisticated signal processing 
techniques for target detection. Improvements in processor 
design can be achieved by developing approaches that 
incorporate knowledge of the surrounding ocean environment 
and noise in the form of mathematical models into their 
processing schemes [1-4]. One of the major problems with 
model-based signal processing schemes is assuring that the 
model incorporated in the algorithm is adequate for the 
proposed application and that it can faithfully represent the 
on-going phenomenology. Therefore, it is necessary, as part 
of the  model-based processor (MBP) design procedure, to 
estimate/update the model parameters jointly (adaptively) 
while performing the required processing [5,6]. The 
incorporation of a parametrically adaptive, on-line, MBP can 
offer a dramatic detection improvement in a tactical passive 
or active sonar-type system especially when a rapid 
environmental assessment and detection is required.  In this 
paper, we discuss the development of a processor capable of 
adapting to the ever-changing ocean environment thereby 
providing the required signal enhancement for detection.  
 
With this motivation in mind, we investigate the development 
of a sequential detector,  that is, a monitor that incorporates 
an initial mathematical representation of the weak target 
model into its framework and adapts, on-line, its parameters 

as the ocean and target change. In this paper we use an 
adaptive state-space scheme [7] and apply it to the detection 
and monitoring problem.  This can be accomplished by 
constructing an adaptive MBP that allows continuous 
updating of the model parameters and is easily implemented 
by augmenting them into the current state vector [7-9].  
Currently, techniques that adjust model parameters to adapt 
to the changing environment are termed environmentally 
adaptive.  
 
We start by developing a solution to the general sequential 
detection problem. Here we assume generic signal models, 
uncertainty and noise. It is shown that the solution can be 
obtained using the Wald sequential theoretic framework 
leading to a recursive log-likelihood solution under the 
Neyman-Pearson criterion [10]. Once the basic detector is 
developed, structurally, we extend the results to solve the 
composite detection problem with unknown parameters 
leading to the generalized (sequential) log-likelihood 
solution. Here we incorporate both the log-likelihood 
decision function and adaptive parameter estimation into the 
sequential framework leading to a joint detection/signal 
enhancement solution.  
 
Special cases of the generic signal model are then 
investigated (e.g. far-field sources, unknown frequencies, 
bearings, etc.) and cast into the sequential framework to 
develop the underlying theory required for each. It is shown 
that this formulation of the detection problem for 
nonstationary ocean acoustic signals leads to a general 
approach capable of solving a large number of 
detection/enhancement problems. 
  

 
II. SEQUENTIAL DETECTION THOERY 

 
In this section we develop the sequential detection scheme for 
nonstationary processes. We start with the batch solution and 
then develop the sequential approach. First we assume that 
we have a set of vector measurements defined by 

{ } 1
tP : (0), (1), , ( ) ,  Lt ×= p p p p∈  and we would like to 
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develop a processor based on the usual binary decision 
problem [10]: 
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which is precisely the sequential form of the likelihood ratio. 
It is also clear that not just the likelihood function can be used 
but any monotonic function of the likelihood can also be used 
as well [10,11]. Taking natural logarithms of both sides of the 
equation, and defining ( ) : ln ( )t LΛ = , we obtain the 
sequential log-likelihood ratio as  

 
where the null hypothesis is noise and the alternate is the 
signal and noise case. We choose the Neyman-Pearson 
criterion to develop our detector [10]. 
 
Recall that the Neyman-Pearson theorem states that a detector 
is optimal if it maximizes the probability of detection, 

(or minimizes the miss probability) for any false alarm 

rate less than a pre-specified value, say . The theorem 
follows directly from a constrained optimization problem 
formulation using Lagrange multipliers (see [10,11] for 
details), which yields the solution based on the ratio of 
likelihood’s, (for the binary case). That is, 

to maximize for a fixed value of 

DET
Pr

FA
Pr∗

FA
Pr

Pr(P | );  0,1t iH i =

DET
Pr

FA
Pr∗= , we 

have the likelihood ratio,  or equivalently sufficient 
statistic defined by the joint density functions 

( )L t

 
-1 1 -1( ) ( 1) ln Pr( ( ) | P ; ) ln Pr( ( ) | P ; )t tt t t H t HoΛ = Λ − + −p p . (8) 

 
To construct the sequential probability ratio test (SPRT) or 
equivalently the sequential likelihood ratio test (SLRT) based 
on the Neyman-Pearson criterion, we must define two time-
varying thresholds ( )o tΤ and . If the likelihood ratio at 
time t is greater than threshold Τ , we accept 
hypothesis

1( )tΤ

1( )t

1H . If it is less than , we accept (oΤ )t oH , but if 
its value lies between the thresholds, we continue to take 
another sample. The sequential test differs from the fixed 
sample size “batch” test and is capable of handling non-
stationary statistics as we will show in a subsequent section.  
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,       (2) To implement the SLRT at the t  stage ( see Eq.  (7) or (8) ), 
we must know the prior probabilities or equivalently the prior 
likelihood ratio, 

th

( 1)L t −  (or ) containing all of the 
past information and the corresponding stage conditional 
probabilities 

(tΛ −1)

( )iH-1Pr ;t( ) | Ptp
tht

to sequentially update the 

likelihood. The  stage thresholds are construct following 
Neyman-Pearson theory in terms of the detection and false 
alarm probabilities as 

 
for  and  are the respective joint probabilities under 
each hypothesis. Here the threshold Τ is found from the false 
alarm density for the pre-specified value 

Pt ( )Pr ⋅

( )FA FA
Pr Pr P | Prt oH dP

∞ ∗
Τ

= ∫ .         (3) 

 
 Thus, based on the Neyman-Pearson criterion, the optimal 

detector can be found for “batch” mode as  
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            (9) 
In the case of the log-likelihood, the thresholds must be 
transformed as well, that is,   

It follows from the chain rule of probability theory [10] that  
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which can be expressed succinctly using Bayes’ rule as 
 
 ( ) ( ) ( ) ( )1 1Pr P | Pr ( ),P | Pr ( ) | P ; Pr P |t i t i t i t iH t H t H− −= =p p 1 H−  
  (6) 

This completes the fundamental concepts for the construction 
of the sequential detection approach; however, before we 
close this section, we must consider the case of incorporating 
unknown parameters into the binary detection problem, 
which will lead to the generalized likelihood tests [11]. 
 

Substituting these expressions into Eq.  (2), we obtain  If the conditional densities of the underlying problem contain 
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a set of unknown parameters defined by the vector , then 
two cases must be considered for sequential detection. In the 
first case, is considered to be random and therefore joint 
conditional probabilities, 

Θ

Θ
(Pr P , |t )iHΘ  must be incorporated 

and the likelihood is now computed in terms of the marginals  

III. JOINT SEQUENTIAL DETECTION/SIGNAL ENHANCEMENT 

In this section we develop a solution to the joint detection 
/signal enhancement problem for a towed array in the ocean. 
We start with the noisy pressure-field measurement given by 
  

 

( )
( )

( )
( )
( ) ( )
( ) ( )

1 11 1

1 1

1 1 1

1

Pr P , |Pr P |
( )

Pr P | Pr P , |

Pr P | ; Pr |
                               

Pr P | ; Pr |

tt

t o t o

t

t o o

H dH
L t

H H d

H H d

H H d

−−

− −

−

−

Θ
= =

Θ

Θ
=

Θ

∫
∫
∫
∫

Θ

Θ

Θ Θ

Θ Θ

 

  (11) 

 ( ; ) ( ; ) ( ; )p r t s r t r tν= + , (16) 
 
where is the measured pressure-field at the -hydrophone 
located at spatial location, , and at time ; 

p th

r t s  is the target 
or source signal to be detected and ν  is the broadband noise 
component present in the ocean environment. We can 
simplify this notation by expanding over the horizontal array 
of -elements, that is, Lby integrating over Θ , the likelihood ratio is determined and 

in a sense, the composite problem is reduced to simple 
hypothesis testing.  

 ( ) ( ) ( )t t t= +p s ν , (17)  
 In the second case, is considered to be deterministic but 

unknown and the above approach cannot be applied. Another 
approach is to estimate the unknown parameter vector 

under each hypothesis and proceed with the simple 
testing. A maximum likelihood estimate, , can be used 
to create the generalized likelihood ratio test (GLRT) defined 
by 

Θ

ˆ →Θ Θ

ML
Θ̂

with 1, , L×∈p s ν . We decompose this representation further 
by developing the component signal and noise models. We 
assume that the signal can be characterized by a weak target 
in the far-field of the array given by 
 

 , (18) ( )sin ( )( )( ) o o o oo o i t k r vti t
o os t e e ω θωα α − +− ⋅= =k r
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for the target parameters: ,  ,  ,  ,  o o o ok orα ω θ

v

that are the 
respective amplitude, temporal frequency, wavenumber, 
bearing angle and initial sensor location. Since the array is 
being towed, we include the tow speed,  as well. We can 
simplify this model by defining the following terms,  

This is the approach we use in this paper for our adaptive 
processor; therefore, the GLRT is defined by 
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or in logarithmic form as  
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for . The broadband 
measurement noise is modeled as zero-mean, white gaussian, 
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( )νν, ( )R t∼ . Note that we are not restricting the 
statistics to be stationary, so we can accommodate the 
nonstationarities (transients, etc.) that occur naturally in the 
ocean environment. 
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For the joint detection/signal enhancement problem under the 
null hypothesis, we have that  is a 
conditionally gaussian distribution, since  is white. 
Therefore the conditional density is given by 

t-1Pr( ( ) | P ; )ot Hp
ν

( ) ( )-1Pr ( ) | P ; N 0, ( )t o vvt H Rp ∼ t . For various assumptions 
on the structure of the signal model the density changes. We 
start with the simplest signal model and proceed. 
 

 Case I: Known signal  with ( )ts ( ) ( )p p-1 1 ˆPr ( ) | P ; N ( | 1), ( )t et H t t R t−p p∼ e : 
This completes the background theory, next we apply it to 
our ocean acoustic problem.  For this case we have the following conditional statistics 
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enhancement problem can now be stated as 
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Simplifying terms Eq. (21) becomes 
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the terms that are not a function of the measurement into the 
threshold gives the classical matched-filter result [10,11]. 
 
Case II:Unknown  for P  ( ; )t Θs ( ) ( )p p-1 1 ˆr ( ; ) | P ; , N ( | 1; ), ( ; )tt H t t R tΘ Θ − Θ Θp p∼ e e

Using the GLRT of Eq. (12) to sequentially perform the 
detection, we must estimate the parameters on-line as well. It 
is well known from recursive estimation theory that a MBP 
can be used to sequentially estimate these parameters based 
on this Gauss-Markov formulation. We have a linear state-
space, but unfortunately a nonlinear measurement system 
requiring a nonlinear processor. This problem can be solved 
by a parametrically adaptive MBP using the recursive 
extended Kalman filter (EKF) given in Table I to provide the 
maximum likelihood parameter estimates (gaussian case) for 
the optimal detector [5,6,9]. 
 In this case the signal structure is known from Eq. (18), but 

not the parameters. The conditional statistics are therefore TABLE I 
ADAPTIVE MODEL-BASED SIGNAL ENHANCER  
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Since is assumed to be a far-field source, we have that at 

the -sensor, 

( )ts
th ( )sin( ) ( ) i ts t t e β θα −= . Now expanding 

over the -sensor array, we obtain the signal vector L
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Signal enhancement can be achieved by defining the signal 
vector in terms of its unknown parameters, , for (a 
single target), 

( ; )ts Θ
: [  |  | ]α ω θ ′=Θ . In this case we assume that 

the unknown parameters in the signal model, , are 
characterized by a piecewise constant representation  (

Θ
=Θ )  0

This parameter vector is the state vector and therefore the 
underlying discrete Gauss-Markov model for this problem is  
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Using the EKF algorithm it is necessary to provide 
thejacobians for implementation, that is, 
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completing the development of the parametrically adaptive 
solution. 
 
Using the same approach as Case I, we obtain the optimal 
decision function   
 

p p
-1 -1( ) ( 1) ( ; ) ( ; ) ( ; ) ( ) ( ) ( )vve et t K t R t t t R tΘ Θ ′Λ = Λ − + ∆ + −p pe Θ Θ e Θ p p

              (27) 
 
The innovations and its covariance are given by the following 
(see Table I for details) 
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So we see that the effect of the unknown signal model is to 
complicate the log-likelihood decision function by including 
the additional information. However, assuming that this 
knowledge is accurate, the correct decision can be 
accomplished at a much lower SNR---which is the main 
objective of this MBP scheme.  
 
Thus, the joint parametrically adaptive processor is capable 
of not only providing a the optimal detection solution 

 in a sequential manner with nonstationary statistics 
incorporated, but also capable of adaptively estimating the 
weak far-field target signal for optimal signal enhancement 

. Thus, the sequential approach does in fact 
provide a solution to the joint detection/enhancement 
problem. Next we summarize our results and discuss future 
efforts. 

( ( )tΘΛ

(ˆ( ; )ts Θ ( )→ s

 
 

III. SUMMARY 
 

In this paper we have developed a solution to the joint 
detection/signal enhancement problem using a model-based 
approach [5].  Starting with the optimal (Neyman-Pearson) 
detector solution, we developed the corresponding model-
based solution demonstrating their equivalence for the case 

where the signal is known a priori. Next we developed the 
solution to the joint problem with the signal unknown, but 
parameterized as a far-field source. The solution to this 
problem lead to the parametrically adaptive model-based 
processor implemented with the nonlinear extended Kalman 
filter (EKF) algorithm. It was shown how to design the 
processor for this problem. 
 
Future efforts will be aimed at applying this technique to both 
simulated and measured hydrophone data. We plan to use the 
discrete implementation of the factorized EKF available in 
MATLAB [12] with the toolbox  SSPACK_PC [13]. 
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